

‭2‬

‭Namaste React‬
‭Episode 01 - Inception‬

‭What is a CDN ?‬

‭●‬ ‭A Content Delivery Network or Content Distribution Network‬
‭(CDN) is a geographically distributed network of proxy servers‬
‭and their data centers.‬

‭●‬ ‭The goal is to provide high availability and performance by‬
‭distributing the service spatially relative to end users.‬

‭●‬ ‭CDNs have grown to serve a large portion of the internet content‬
‭today, including web objects (text, graphics & scripts),‬
‭downloadable objects (media files, software, documents),‬
‭applications (e-commerce, portals), live streaming media,‬
‭on-demand streaming media, and social media sites.‬

‭●‬ ‭CDNs are a layer in the internet ecosystem. Content owners such‬
‭as media companies and ecommerce vendors pay CDN operators to‬
‭pay their content to their end users.‬

‭●‬ ‭We can add React into our project by injecting CDN links in it (in‬
‭an .html file).‬

‭Why do we use CDN ?‬

‭●‬ ‭Improved scalability and connectivity.‬
‭●‬ ‭In addition to facilitating end-users with faster load times, which‬

‭translates into greater user -experience, a content delivery‬

‭Aditya Kharadkar‬

‭3‬

‭network also rewards web publishers with increased traffic,‬
‭higher page views, etc.‬

‭●‬ ‭Decreased bandwidth consumption.‬
‭●‬ ‭Lower latency.‬
‭●‬ ‭Latency is the lag between request and response.‬
‭●‬ ‭Effective traffic spike management.‬
‭●‬ ‭Enhanced cyber security.‬
‭●‬ ‭A CDN employs automation and data analytics tools that help‬

‭identify firewall issues, Man in the middle threat, Distributed‬
‭Denial of Service attacks.‬

‭What is crossorigin and why do we use it in React CDN ?‬

‭●‬ ‭CORS or cross-origin resource sharing is a mechanism that allows‬
‭memory resources (e.g., fonts, JavaScript, etc) on a webpage to‬
‭be requested from another domain outside the domain from which‬
‭the resource originated.‬

‭React.development.js‬

‭●‬ ‭This file is the core of React.‬
‭●‬ ‭This file contains the whole code of React which is written in‬

‭JavaScript.‬

‭React-dom.development.js‬

‭●‬ ‭Using this file, React interacts with the browser DOM.‬

‭Aditya Kharadkar‬

‭4‬

‭First program in React‬

‭●‬ ‭The costliest operation for a browser is when the browser needs‬
‭to manipulate the DOM.‬

‭●‬ ‭Any React element is nothing but a JavaScript object.‬
‭●‬ ‭This object contains a key known as‬‭props‬‭which stores‬‭the‬

‭children and other attributes of the React element in a key-value‬
‭pair.‬

‭●‬ ‭The render() function is responsible for taking the JavaScript‬
‭object (React element) as an argument, converting it into an‬
‭HTML tag and putting it in the DOM.‬

‭Aditya Kharadkar‬

‭5‬

‭Create nested elements (with sibling elements)‬

‭Where should I put the <script> tag ? In the <head> or <body> ?‬

‭●‬ ‭The reason it was recommended to put <script> tags at the end of‬
‭the <body> was so that the scripts wouldn’t stop the browser‬
‭from parsing the HTML.‬

‭●‬ ‭When a browser gets to a <script> tag, it stops everything else‬
‭and loads the files for that <script> tag and then evaluates it.‬

‭●‬ ‭Thus, if you put <script> tag in the <head> or at the beginning of‬
‭the <body>, then the user would have to wait longer for the HTML‬
‭to render, possibly leaving them staring at a blank page for a‬
‭while.‬

‭●‬ ‭Nowadays this isn’t really a concern any more because you can‬
‭force the browser to download/evaluate JS files asynchronously‬
‭by using the async/defer attribute on the <script> tag.‬

‭●‬ ‭Be advised, these attributes only work for <script> tags loading‬
‭external JS files (i.e. the‬‭src‬‭attribute is pointing‬‭to a file).‬

‭Aditya Kharadkar‬

‭6‬

‭What if there is already an HTML element inside the <div> which‬
‭is rendered by React using render() function.‬

‭●‬ ‭If there is already an HTML element in the <div> tag, then that‬
‭HTML element will be loaded in the DOM and shown on the page.‬

‭●‬ ‭But as soon as JavaScript reaches the <script> tag which imports‬
‭the React code, it will replace that HTML element with the React‬
‭code.‬

‭What is Emmet ?‬

‭●‬ ‭Emmet is a free add-on for your text editor that allows you to‬
‭type shortcuts that are then expanded into a full piece of code.‬

‭What is the difference between a framework and a library ?‬

‭1.‬ ‭Library‬
‭a.‬ ‭A library provides a set of helper‬

‭functions/objects/modules which your application code calls‬
‭for specific functionality.‬

‭Aditya Kharadkar‬

‭7‬

‭b.‬ ‭Libraries typically focus on a narrow scope (e.g., strings, IO,‬
‭sockets), so their APIs also tend to be smaller and require‬
‭fewer dependencies.‬

‭2.‬ ‭Framework‬
‭a.‬ ‭Framework on the other hand has defined open or‬

‭unimplemented functions or objects which the user writes‬
‭to create custom applications.‬

‭b.‬ ‭Because a framework is itself an application. It has a wider‬
‭scope and includes almost everything necessary to make a‬
‭user application as per his own needs.‬

‭●‬ ‭When you use a library, you are in control of the flow of the‬
‭application.‬

‭●‬ ‭When you use a framework, the framework is in control of the‬
‭flow of the application.‬

‭●‬ ‭The framework dictates the architecture and how the application‬
‭is structured, and you fill in the details within that structure.‬

‭●‬ ‭For example, a web framework will often handle routing,‬
‭middleware and request processing and you define the specific‬
‭actions for your application within that structure.‬

‭●‬ ‭In a library, you decide when and where to call library functions.‬
‭●‬ ‭For example, you might use a library to perform specific tasks‬

‭like handling HTTP requests, manipulating data, or creating UI‬
‭components.‬

‭Why is React named “React” ?‬

‭●‬ ‭React is abruptly named because it “reacts” quickly to the‬
‭changes without reloading the whole page.‬

‭●‬ ‭It uses the virtual DOM to efficiently update parts of a webpage.‬

‭Aditya Kharadkar‬

‭8‬

‭●‬ ‭It’s built around components that ‘react’ and update.‬

‭What is the difference between React and React-dom ?‬

‭●‬ ‭React is a JavaScript library, designed for building better user‬
‭interfaces.‬

‭●‬ ‭React-dom is a complementary library to React which glues React‬
‭to the browser DOM.‬

‭●‬ ‭While React provides the tools and concepts to define‬
‭component-based user interfaces, React-dom handles the task of‬
‭rendering those interfaces in a web environment.‬

‭Explain the difference between Real DOM and Virtual DOM.‬

‭1.‬ ‭Real DOM‬
‭a.‬ ‭Real DOM is the actual structure of the webpage.‬
‭b.‬ ‭React updates complete document in the Real DOM.‬
‭c.‬ ‭Real DOM is the actual web page rendered on the browser.‬

‭Any changes made reflect directly on the complete webpage.‬
‭2.‬ ‭Virtual DOM‬

‭a.‬ ‭Virtual DOM is the virtual representation of the Real DOM.‬
‭b.‬ ‭React updates the state changes in virtual DOM first and‬

‭then it syncs with the Real DOM.‬
‭c.‬ ‭Virtual DOM is just like a blueprint of a machine, we can‬

‭make changes in the blueprint but those will not directly‬
‭apply to the machine.‬

‭d.‬ ‭Virtual DOM is a programming concept where a virtual‬
‭representation of UI is kept in memory synced with Real‬
‭DOM by a library such as React-dom and this process is‬
‭called‬‭reconciliation‬‭.‬

‭Aditya Kharadkar‬

‭9‬

‭e.‬ ‭Virtual DOM makes the performance faster, not because‬
‭the processing itself is done in less time but the reason is‬
‭the amount of changed information - rather than wasting‬
‭time on updating the entire page.‬

‭When does React sync the changes of Virtual DOM with Real DOM‬
‭?‬

‭●‬ ‭React synchronizes the changes from the virtual DOM to the Real‬
‭DOM during a process called reconciliation. This process involves‬
‭several steps:‬

‭○‬ ‭State and prop changes‬
‭○‬ ‭Re-rendering‬
‭○‬ ‭Diffing - React compares the new virtual DOM tree with the‬

‭previous one to identify what has changed.‬
‭○‬ ‭Batch updates - React doesn’t immediately update the Real‬

‭DOM with each change. Instead, it batches updates to‬
‭optimize performance. The batching happens within the‬
‭lifecycle of an event or after a certain period of time. (e.g.,‬
‭after user action like clicking a button or typing in an input‬
‭field).‬

‭○‬ ‭Commit phase.‬
‭○‬ ‭Asynchronous updates.‬

‭What is the difference between react.development.js and‬
‭react.production.js via CDN ?‬

‭●‬ ‭Use react.development.js during developing and debugging your‬
‭application. It helps catch issues early by providing detailed error‬
‭messages and warnings.‬

‭Aditya Kharadkar‬

‭10‬

‭●‬ ‭Use react.production.js when deploying your application to‬
‭production. It ensures better performance, faster load times by‬
‭stripping out unnecessary development features.‬

‭Difference between async and defer‬

‭●‬ ‭Async‬
‭○‬ ‭Execution order‬‭- Scripts with async attributes are‬

‭executed as soon as they are downloaded regardless of the‬
‭order in which they appear on the document.‬

‭○‬ ‭Loading behavior‬‭- The browser will download the script‬‭in‬
‭the background while continuing to parse the HTML‬
‭document. Once the script is downloaded, it will immediately‬
‭execute, potentially interrupting the parsing of the‬
‭document.‬

‭○‬ ‭Use case‬‭- Best for scripts that are independent and‬‭do not‬
‭rely on the DOM being fully parsed or other scripts being‬
‭loaded.‬

‭●‬ ‭Defer‬
‭○‬ ‭Execution order‬‭- Scripts with defer attribute are‬

‭executed in the order they appear in the document, but only‬
‭after the entire HTML document has been parsed.‬

‭○‬ ‭Loading behavior‬‭- The browser will download the scripts‬‭in‬
‭the background while parsing the HTML document, but will‬
‭defer execution of the script until after the HTML parsing‬
‭is complete.‬

‭○‬ ‭Use case‬‭- Ideal for scripts that need to interact‬‭with fully‬
‭parsed DOM or that depend on other scripts.‬

‭Aditya Kharadkar‬

‭11‬

‭Episode 02 - Igniting our app‬

‭What is NPM ?‬

‭●‬ ‭NPM is a package manager.‬
‭●‬ ‭It is the world’s largest software registry.‬
‭●‬ ‭Open source developers from every continent use npm to share‬

‭and borrow packages and many organizations use npm to manage‬
‭private development as well.‬

‭●‬ ‭It consists of three components:‬
‭○‬ ‭The website‬
‭○‬ ‭The command line interface‬
‭○‬ ‭The registry‬

‭●‬ ‭Use npm to:‬
‭○‬ ‭Adapt packages of code for your apps, or incorporate‬

‭packages as they are.‬
‭○‬ ‭Download standalone tools you can use right away.‬
‭○‬ ‭Run packages without downloading using npx.‬
‭○‬ ‭Share code with any npm user anywhere.‬
‭○‬ ‭Restrict code to specific developers.‬
‭○‬ ‭Create organizations to coordinate package maintenance,‬

‭coding and developers.‬
‭○‬ ‭Manage multiple versions of the code and code‬

‭dependencies.‬
‭○‬ ‭Update applications easily when underlying code is updated.‬

‭What is a package.json file ?‬

‭●‬ ‭The package.json file is the heart of the node.js system.‬

‭Aditya Kharadkar‬

‭12‬

‭●‬ ‭It is the manifest file of any node.js project and contains the‬
‭metadata of the project.‬

‭●‬ ‭This metadata information can be categorized into below‬
‭categories:‬

‭○‬ ‭Identifying metadata properties:‬‭It basically consists‬‭of‬
‭the properties to identify module/project such as the name‬
‭of the project, current version of the module, license,‬
‭author of the project, description about the project, etc.‬

‭○‬ ‭Functional metadata properties:‬‭It consists of the‬
‭functional values/properties of the project/module such as‬
‭entry/starting point of the module, dependencies in project‬
‭scripts being used, repository link, etc.‬

‭What is a bundler ?‬

‭●‬ ‭A JavaScript bundler is a tool that puts your code and all its‬
‭dependencies together in one JavaScript file.‬

‭●‬ ‭It is a development tool that combines many JavaScript code‬
‭files into a single one that is production-ready loadable in the‬
‭browser.‬

‭●‬ ‭Following are the top 5 bundlers in JavaScript:‬
‭○‬ ‭Browserify‬
‭○‬ ‭ESbuild‬
‭○‬ ‭Parcel‬
‭○‬ ‭Rollup‬
‭○‬ ‭Webpack‬

‭Package.json is a configuration for npm.‬

‭Create-react-app uses webpack bundler behind the scenes.‬

‭Aditya Kharadkar‬

‭13‬

‭There are 2 types of dependencies in the package we install:‬

‭1.‬ ‭Dev dependencies‬
‭2.‬ ‭Normal dependencies‬

‭Caret and Tilde in package.json‬

‭1.‬ ‭Tilde (~) Notation‬
‭a.‬ ‭The Tilde (~) notation is employed to match the latest patch‬

‭version while freezing the major and minor versions.‬
‭b.‬ ‭This notation is useful for automatically updating the bug‬

‭fixes, considering that patch updates primarily update bugs.‬
‭2.‬ ‭Caret (^) Notation‬

‭a.‬ ‭It automatically updates both minor and patch updates.‬
‭b.‬ ‭This is used as default notation by npm.‬
‭c.‬ ‭If the current version of a package is ^1.2.4, and tomorrow‬

‭if there is an upgrade in the package and we get a new‬
‭version i.e. 1.2.5, then (^) will automatically upgrade 1.2.4 to‬
‭1.2.5.‬

‭d.‬ ‭Caret helps in upgrading the minor versions whereas tilde‬
‭helps in upgrading the major versions.‬

‭What is the role of the package-lock.json file ?‬

‭●‬ ‭The package-lock.json file in npm simply serves as a lockfile that‬
‭captures the exact versions of packages and their dependencies.‬

‭●‬ ‭It ensures that the same version of packages is used across‬
‭different installations or environments.‬

‭●‬ ‭This consistency prevents unexpected package versions and helps‬
‭avoid compatibility issues.‬

‭Aditya Kharadkar‬

‭14‬

‭●‬ ‭When you install or update packages using npm, it checks the‬
‭package-lock.json file to ensure the specified versions are‬
‭installed.‬

‭●‬ ‭This lockfile is especially important when collaborating on‬
‭projects as it guarantees that all the contributors use consistent‬
‭package versions.‬

‭Transitive Dependencies‬

‭●‬ ‭When a dependency has its own dependencies and those‬
‭dependencies have their own dependencies, then it is known as‬
‭transitive dependencies.‬

‭●‬ ‭In the React project, inside node modules, every dependency‬
‭folder has its own package.json file which contains the‬
‭dependencies and the description of that dependency.‬

‭Why should we not push the node_modules to git or production ?‬

‭●‬ ‭Node modules are huge in size.‬
‭●‬ ‭If we have package.json and package-lock.json, then we can‬

‭recreate the node modules anytime.‬
‭●‬ ‭This is why it is not recommended to push the node modules.‬

‭Build our app using Parcel‬

‭npx parcel index.html‬

‭●‬ ‭Parcel is a web application bundler, differentiated by its‬
‭developer experience.‬

‭●‬ ‭When you run npx parcel index.html, parcel does the following:‬
‭○‬ ‭Development mode (default)‬

‭Aditya Kharadkar‬

‭15‬

‭■‬ ‭It starts a development server.‬
‭■‬ ‭It serves the index.html file and watches for changes‬

‭in your file.‬
‭■‬ ‭It automatically reloads the browser when it detects‬

‭the changes.‬
‭○‬ ‭Build mode (with additional options)‬

‭■‬ ‭If you specify a build option (e.g., npx parcel build‬
‭index.html), parcel will create an optimized,‬
‭production-ready bundle.‬

‭■‬ ‭It minifies the code and optimizes assets for better‬
‭performance.‬

‭Explain NPM‬

‭●‬ ‭Primary purpose‬
‭○‬ ‭It is a package manager.‬
‭○‬ ‭It is used to install, share, and manage dependencies in‬

‭node.js projects.‬
‭●‬ ‭Main functions‬

‭○‬ ‭Installing packages‬
‭■‬ ‭You can install packages globally or locally in your‬

‭project.‬
‭■‬ ‭For example,‬‭npm install loadash‬‭installs the loadash‬

‭package locally, and‬‭npm install -g loadash‬‭installs‬‭it‬
‭globally.‬

‭○‬ ‭Managing dependencies - It maintains a package.json file‬
‭that lists all the dependencies of the project.‬

‭○‬ ‭Running scripts‬

‭Aditya Kharadkar‬

‭16‬

‭■‬ ‭You define scripts in package.json and run them using‬
‭npm run script_name‬‭.‬

‭■‬ ‭For example,‬‭npm run build‬‭could be a script to build‬
‭your project.‬

‭○‬ ‭Publishing packages - It allows developers to publish their‬
‭own packages to the npm registry.‬

‭Explain NPX‬

‭●‬ ‭Primary purpose‬
‭○‬ ‭NPX is a package runner tool that comes with npm (since‬

‭npm version 5.2.0).‬
‭○‬ ‭It allows you to execute libraries from npm packages‬

‭without needing to install them globally.‬
‭●‬ ‭Main functions‬

‭○‬ ‭Running local binaries‬
‭■‬ ‭If you have a package installed locally in your project,‬

‭you can use npx to run its binaries without needing to‬
‭specify the path.‬

‭■‬ ‭For example, ‘‬‭npx eslint .’‬‭runs the local eslint‬‭library.‬
‭○‬ ‭Running remote binaries‬

‭■‬ ‭Npx can download and execute packages directly from‬
‭the npm registry without installing them.‬

‭■‬ ‭For example,‬‭npx create-react-app my-app‬‭runs the‬
‭create-react-app directly.‬

‭○‬ ‭Avoiding global installs‬
‭■‬ ‭Npx is useful for running one-off commands without‬

‭polluting your global package namespace.‬

‭Aditya Kharadkar‬

‭17‬

‭■‬ ‭For example, you can use ‘npx parcel index.html’ to run‬
‭parcel without needing to install it globally.‬

‭Key differences between npm and npx‬

‭●‬ ‭Installations vs Execution‬
‭●‬ ‭Global installs‬
‭●‬ ‭Temporary use‬
‭●‬ ‭Ease of use‬

‭Why should CDN links not be used to bring React and React-dom in‬
‭the project ?‬

‭●‬ ‭If we use CDN links, then we will have to make a network call to‬
‭bring React into our project.‬

‭●‬ ‭Currently we use React version 18 which is mentioned in the CDN‬
‭link as well. So if in future, React version 19 comes, then we will‬
‭have to change the CDN links again.‬

‭●‬ ‭We can install React using npm install react which will store React‬
‭into node modules and will not cause any dependency issues.‬

‭●‬ ‭To get React from a CDN link, you will need to have a network‬
‭(internet) connection.‬

‭Browser scripts cannot have imports/exports‬

‭●‬ ‭When we install React into the application and remove the CDN‬
‭links, then we will get an error which says‬‭Uncaught‬
‭ReferenceError: React is not defined‬‭.‬

‭●‬ ‭This happens because we have installed React, but not imported it‬
‭into our JavaScript file.‬

‭Aditya Kharadkar‬

‭18‬

‭●‬ ‭import React from ‘react’;‬
‭●‬ ‭When we do this, we get an error which says‬‭Browser‬‭scripts‬

‭cannot have imports or exports‬‭.‬
‭●‬ ‭Since we are importing the app.js file in index.html using <script>‬

‭tag, the browser considers it as a normal JavaScript file or a‬
‭browser script.‬

‭●‬ ‭To make the browser understand that this is not a normal‬
‭JavaScript file , but a module, we have to add an extra attribute‬
‭into <script> tag.‬

‭●‬ ‭<script type=’module’ src=’./app.js’></script>‬

‭HMR (Hot Module Replacement)‬

‭●‬ ‭HMR exchanges, adds, or removes modules while an application is‬
‭running, without a full reload.‬

‭●‬ ‭This can significantly speed up development in a few ways:‬
‭○‬ ‭Retain the application state which is lost during a full reload.‬
‭○‬ ‭Save valuable development time by only updating what’s‬

‭changed.‬
‭○‬ ‭Instantly update the browser when modifications are made‬

‭to the css/js file in the source code, which is almost‬
‭comparable to changing styles directly in the browser’s dev‬
‭tools.‬

‭●‬ ‭How does it work in the application ?‬
‭○‬ ‭The application asks HMR runtime to check for updates.‬
‭○‬ ‭The runtime asynchronous downloads the updates and‬

‭notifies the application.‬
‭○‬ ‭The application then asks the runtime to apply the updates.‬
‭○‬ ‭The runtime synchronously applies the updates.‬

‭Aditya Kharadkar‬

‭19‬

‭How does parcel know that there are changes in the file/code ?‬

‭●‬ ‭Parcel uses a file watching algorithm which is developed using C++.‬
‭●‬ ‭This algorithm keeps track of every file and every change made‬

‭into a file.‬

‭How does parcel perform builds so quickly ?‬

‭●‬ ‭When we start the server using parcel for the first time, it‬
‭creates a folder in the project named‬‭.parcel-cache‬‭.‬

‭●‬ ‭So the parcel uses caching. And after every subsequent build, it‬
‭will update the cache.‬

‭What other things does the parcel do ?‬

‭1.‬ ‭Compressing files‬
‭2.‬ ‭Bundling‬
‭3.‬ ‭Image optimization‬
‭4.‬ ‭Minification‬
‭5.‬ ‭Consistent Hashing‬
‭6.‬ ‭Differential Bundling‬
‭7.‬ ‭Diagnostics‬

‭Removing “main” key from package.json‬

‭●‬ ‭Inside package.json, there is a key named “main” which has a value‬
‭i.e.‬‭file_name‬‭(App.js).‬

‭●‬ ‭This tells npm that App.js is the entry point.‬

‭Aditya Kharadkar‬

‭20‬

‭●‬ ‭But since we use the parcel, we give an entry point, we get an‬
‭entry point while executing the command itself. So in that case,‬
‭this ‘main’ key is of no use.‬

‭●‬ ‭When we try to execute ‘npx parcel build index.html’, then it gives‬
‭an error. Because, the entry point given in the command has a‬
‭conflict with the value of ‘main’ key.‬

‭●‬ ‭So in that case, we should remove the ‘main’ key-value pair from‬
‭package.json.‬

‭Executing npx parcel index.html or npx parcel build index.html‬

‭●‬ ‭When we execute‬‭npx parcel index.html‬‭, parcel creates‬‭a‬
‭development build and stores it in the folder named‬‭dist‬‭.‬

‭●‬ ‭After every subsequent change, parcel will update this dist folder‬
‭every time an app/component renders or every time we save new‬
‭changes.‬

‭●‬ ‭The same thing happens when we execute‬‭npx parcel‬‭build‬
‭index.html‬‭. The only difference is parcel creates‬‭a production‬
‭build and stores it in the dist folder in this case.‬

‭●‬ ‭Note - Do not push the folders dist and .parcel-cache into git‬
‭repo because they can be regenerated.‬

‭Make our app compatible with older browsers/specific browsers‬

‭●‬ ‭To make our app compatible with older/specific browsers, we can‬
‭make use of‬‭browserslist‬‭.‬

‭●‬ ‭In the package.json file, we can create a list and give it name as‬
‭browserslist‬‭and specify all the browsers/specific‬‭versions in the‬
‭list.‬

‭Aditya Kharadkar‬

‭21‬

‭●‬ ‭Browserslist is a package stored in node modules and parcel uses‬
‭that to make the app compatible.‬

‭●‬ ‭Refer to‬‭browserslist.dev‬

‭Aditya Kharadkar‬

‭22‬

‭Episode 03 - Laying the foundation‬

‭Run development/production servers using scripts‬

‭●‬ ‭Currently we use below commands to create a dev and prod build‬
‭○‬ ‭npx parcel index.html‬
‭○‬ ‭npx parcel build index.html‬

‭●‬ ‭Instead we can add these commands into the scripts in the‬
‭package.json file.‬

‭●‬ ‭Now, to start the server, we can use below commands:‬
‭○‬ ‭Npm run start / npm start (dev build)‬
‭○‬ ‭Npm run build (prod build)‬

‭JSX‬

‭●‬ ‭JSX is a syntax extension for JavaScript that lets you write‬
‭HTML-like markup inside a JavaScript file.‬

‭●‬ ‭The syntax is used by preprocessors (i.e. transpilers like babel) to‬
‭transform HTML like syntax into standard JavaScript objects‬
‭that a JavaScript engine will parse.‬

‭Aditya Kharadkar‬

‭23‬

‭Babel‬

‭●‬ ‭Babel is a JavaScript compiler.‬
‭●‬ ‭Babel is a toolchain that is used to convert ECMAScript 2015+‬

‭code into a backwards compatible version of JavaScript in‬
‭current and older browsers or environments.‬

‭●‬ ‭Babel can also convert JSX syntax.‬
‭●‬ ‭JSX -> React.createElement -> ReactElement - JS Object ->‬

‭HTML Element (render)‬

‭Creating Functional Components‬

‭●‬ ‭While creating a functional component, the first letter of the‬
‭name of the component must be in uppercase. Otherwise React‬
‭will throw an error.‬

‭●‬ ‭A React component is a normal JavaScript function which returns‬
‭a JSX/React element.‬

‭●‬ ‭Example:‬

‭Component composition‬

‭When we use a functional component into another functional‬
‭component, then it is known as component composition.‬

‭Aditya Kharadkar‬

‭24‬

‭Inside a functional component, we can use curly braces ({ }) inside which‬
‭we can execute any JavaScript expression. E.g., variable, function, etc.‬

‭Note: The code is readable because we write JSX. If the code is‬
‭readable, that does not mean React is making it readable. JSX is the‬
‭one which helps to achieve it.‬

‭Role of type attribute in <script> tag. What options can I use‬
‭there ?‬

‭●‬ ‭The type attribute specifies the type of the script.‬
‭●‬ ‭The type attribute identifies the content between the‬

‭<script></script> tags.‬
‭●‬ ‭It has a default value which is‬‭text/javascript‬‭.‬

‭○‬ ‭text/javascript - It is the basic standard of writing‬
‭JavaScript code inside the <script> tag.‬

‭○‬ ‭text/ecmascript - This value indicates that the script is‬
‭following ECMAScript standards.‬

‭○‬ ‭module - This value tells the browser that the script is a‬
‭module that can import or export other files inside.‬

‭○‬ ‭text/babel - This value indicates that the script is a babel‬
‭type and requires babel to transpile it.‬

‭○‬ ‭text/typescript - As the name suggests, the script is‬
‭written in typescript.‬

‭{ Title } vs { <Title /> } vs { <Title></Title> }‬

‭●‬ ‭{ Title } - This value describes the Title as a JavaScript‬
‭expression or a variable.‬

‭Aditya Kharadkar‬

‭25‬

‭●‬ ‭{ <Title /> } - This value represents a component that is basically‬
‭returning some JSX value.‬

‭●‬ ‭{ <Title></Title> } - <Title> and <Title></Title> are equivalent only‬
‭when <Title> has no child components.‬

‭Aditya Kharadkar‬

‭26‬

‭Episode 04 - Talk is cheap, show me the code‬

‭Config driven UI‬

‭●‬ ‭Config driven UI is a technique that allows you to create user‬
‭interfaces based on a configuration file such as JSON, or a‬
‭typescript file that defines the layout and content of UI‬
‭components.‬

‭●‬ ‭This can be useful for creating dynamic and customizable UIs‬
‭without hard coding them.‬

‭Reconciliation in React‬

‭●‬ ‭The React reconciliation process is the engine behind its efficient‬
‭updates.‬

‭●‬ ‭When the state of a component changes, React needs to‬
‭determine what updates are necessary to the Real DOM, which is‬
‭where the reconciliation process comes into play.‬

‭●‬ ‭Reconciliation is React’s way of diffing the virtual DOM tree with‬
‭the updated virtual DOM to determine the most efficient way to‬
‭update the real DOM.‬

‭●‬ ‭This process allows React to apply only the necessary changes to‬
‭the DOM, avoiding the costly operation of updating the entire‬
‭DOM tree.‬

‭●‬ ‭The reconciliation algorithm is designed to optimize this process,‬
‭ensuring that the minimum number of operations are performed‬
‭leading to potential performance.‬

‭Aditya Kharadkar‬

‭27‬

‭What is React fiber ?‬

‭●‬ ‭React fiber is a re-implementation of React;s core algorithm,‬
‭designed to enhance the user interface’s responsiveness and‬
‭renderability.‬

‭●‬ ‭The term fiber refers to a unit of work, a fundamental concept in‬
‭fiber architecture.‬

‭●‬ ‭The React team introduced React fiber to improve the‬
‭reconciliation phase of the React application, making it more‬
‭efficient and effective.‬

‭●‬ ‭React fiber is not a feature but an ongoing implementation of‬
‭React’s reconciliation algorithm.‬

‭●‬ ‭The React fiber reconciler, a critical part of the fiber‬
‭architecture, is responsible for updating the user interfaces.‬

‭●‬ ‭It does this by comparing the tree with the work in progress‬
‭tree.‬

‭Why and when do we need keys in React ?‬

‭●‬ ‭Keys help React identify which items have changed, are added or‬
‭are removed.‬

‭●‬ ‭Keys should be given to the elements inside the array to give the‬
‭elements a stable identity.‬

‭Can we use indexes as keys in React ?‬

‭●‬ ‭It is not recommended to use indexes as keys in React if the‬
‭order of the items may change.‬

‭Aditya Kharadkar‬

‭28‬

‭●‬ ‭This can negatively impact the performance and may cause issues‬
‭with component state.‬

‭●‬ ‭If you choose not to assign any explicit key to list items, then‬
‭React will default to using indexes as keys.‬

‭Aditya Kharadkar‬

‭29‬

‭Episode 05 - Let’s get hooked‬

‭Can we have both named and default exports in the same file ?‬

‭●‬ ‭You can use one or both of them in the same file.‬
‭●‬ ‭A file can have no more than one default export, it can have as‬

‭many named exports as you like.‬

‭React Hooks‬

‭●‬ ‭React hook is a normal JavaScript function which is provided by‬
‭React which has some logic written behind it (superpowers).‬

‭●‬ ‭These functions are written by facebook developers inside React.‬
‭○‬ ‭useState()‬

‭■‬ ‭When we call a useState() hook/function, it gives us a‬
‭state variable/returns a state variable inside an array.‬

‭■‬ ‭E.g.,‬‭const [list, setList] = useState([]);‬
‭■‬ ‭The second variable is used to modify the state‬

‭variable.‬
‭■‬ ‭Whenever a state variable changes/updates, React‬

‭re-renders the component.‬

‭Diff Algorithm‬

‭●‬ ‭Diff algorithm is used to find the difference between the‬
‭updated virtual DOM and the previous virtual DOM.‬

‭Aditya Kharadkar‬

‭30‬

‭Episode 06 - Let’s explore the world‬

‭Explain Monolithic Architecture‬

‭●‬ ‭A monolithic architecture is a traditional model of a software‬
‭program, which is built as a unified unit that is self-contained and‬
‭independent from other applications.‬

‭●‬ ‭A monolithic architecture is a singular, large computing network‬
‭with one code base that couples all of the business concerns‬
‭together.‬

‭●‬ ‭To make a change to this sort of application requires updating the‬
‭entire stack by accessing the code base and building and‬
‭deploying an updated version of the server-side interface.‬

‭●‬ ‭This makes updates restrictive and time consuming.‬
‭●‬ ‭Monoliths can be convenient early on in a project's life for ease‬

‭of code management, cognitive overhead and deployment. This‬
‭allows everything in monolith to be released at once.‬

‭Aditya Kharadkar‬

‭31‬

‭Microservices Architecture‬

‭●‬ ‭A microservices architecture, also simply known as microservices,‬
‭is an architectural method that relies on a series of independent,‬
‭deployable services.‬

‭●‬ ‭These services have their own business logic and database with a‬
‭specific goal.‬

‭●‬ ‭Microservices decouple major business and domain specific‬
‭concerns into separate, independent code bases.‬

‭●‬ ‭Update, testing, deployment and scaling occurs within each‬
‭service.‬

‭Aditya Kharadkar‬

‭32‬

‭Fetching data from an API‬

‭●‬ ‭There are two approaches.‬
‭○‬ ‭First Approach‬

‭■‬ ‭Page Loads -> Make API call -> Render UI‬
‭■‬ ‭In this approach, as soon as the page loads, we will‬

‭make an API call.‬
‭■‬ ‭As soon as we get the API response, we will populate‬

‭the data and render the UI.‬
‭○‬ ‭Second Approach‬

‭■‬ ‭Page Loads -> Render UI -> Make API call -> Render‬
‭■‬ ‭In this approach, as soon as the page loads, we will‬

‭render the skeleton of the UI.‬
‭■‬ ‭Then we will make an API call.‬
‭■‬ ‭Once we get the API response, then we will populate‬

‭the data and render the UI.‬
‭■‬ ‭In React, we are always going to follow the second‬

‭approach.‬

‭The fetch() global function‬

‭●‬ ‭The global fetch() method starts the process of fetching a‬
‭resource from the network, returning a promise that is fulfilled‬
‭once the response is available.‬

‭●‬ ‭The promise resolves to a response object representing response‬
‭to your request.‬

‭●‬ ‭A fetch() promise only rejects when the API fails.‬

‭Aditya Kharadkar‬

‭33‬

‭Cross-origin Resource Sharing (CORS)‬

‭●‬ ‭CORS is an HTTP header based mechanism that allows a server to‬
‭indicate any origins (domain, scheme, or port) other than its own‬
‭from which a browser should permit loading resources.‬

‭●‬ ‭CORS also relies on a mechanism by which browsers make a‬
‭‘preflight’ request to a server hosting the cross-origin resource,‬
‭in order to check that the server will permit the actual request.‬

‭●‬ ‭An example of cross-origin request: The frontend JavaScript‬
‭code served from‬‭https://domain-a.com‬‭uses fetch to‬‭make a‬
‭request for‬‭https://domain-b.com/data.json‬‭.‬

‭●‬ ‭For security reasons, browsers restrict cross-origin HTTP‬
‭requests initiated from scripts.‬

‭●‬ ‭For example, fetch() and XMLHttpRequest follow the same origin‬
‭policy.‬

‭●‬ ‭That means a web application using those can only request‬
‭resources from the same origin the application was loaded from‬
‭unless the response from other origins includes the right CORS‬
‭headers.‬

‭Note - Showing the spinner until the data is fetched on the screen is‬
‭not a good practice.‬

‭Aditya Kharadkar‬

‭34‬

‭Shimmer UI‬

‭●‬ ‭When the page loads and the data is being fetched, until the data‬
‭is displayed on the UI, instead of showing a spinner, we can show‬
‭the skeleton of the UI.‬

‭How can we change the state variable even if it is defined as a‬
‭constant ?‬

‭●‬ ‭Consider we have a button element on clicking of which the state‬
‭variable changes.‬

‭●‬ ‭A state variable always has an initial value.‬
‭●‬ ‭Whenever a state variable updates, React triggers a‬

‭Reconciliation cycle i.e. React re-renders the component.‬
‭●‬ ‭And when the component re-renders, the state variable will have‬

‭the updated value as its default value.‬

‭Why do we need a useEffect() hook ?‬

‭●‬ ‭The useEffect() is used to handle the side effects such as‬
‭fetching data and updating the DOM.‬

‭●‬ ‭This hook runs on every render but there is also a way of using a‬
‭dependency array using which we can control the effect of‬
‭rendering.‬

‭●‬ ‭It is used to mimic the lifecycle methods of class-based‬
‭components.‬

‭●‬ ‭The motivation behind the introduction of useEffect is to‬
‭eliminate the side effects of using class-based components.‬

‭Aditya Kharadkar‬

‭35‬

‭●‬ ‭For example, tasks like updating the DOM, fetching data from‬
‭API endpoints, setting up subscriptions or timers, etc can lead to‬
‭unwanted side effects.‬

‭●‬ ‭How does it work ?‬
‭○‬ ‭You call useEffect with a callback function that contains the‬

‭side effect logic.‬
‭○‬ ‭By default, this function runs after every render of the‬

‭component.‬
‭○‬ ‭You can optionally provide a dependency array as the second‬

‭argument.‬
‭○‬ ‭The effect will only run again if any of the values in the‬

‭dependency array changes.‬

‭What is optional chaining ?‬

‭●‬ ‭It is a feature that simplifies the process of accessing properties‬
‭and methods of nested objects or arrays when intermediate‬
‭properties may be null or undefined.‬

‭What is the difference between a JS expression and a JS‬
‭statement ?‬

‭●‬ ‭Any unit of code that can be evaluated to a value is an expression.‬
‭●‬ ‭A statement is an instruction to perform a specific action.‬
‭●‬ ‭Such actions include creating a variable or a function, looping‬

‭through an array of elements, etc.‬
‭●‬ ‭JavaScript programs are actually a sequence of statements.‬

‭Aditya Kharadkar‬

‭36‬

‭What is Async and Await ?‬

‭●‬ ‭Async function‬
‭○‬ ‭The Async function allows us to write promise-based code as‬

‭if it were synchronous.‬
‭○‬ ‭This ensures that the execution thread is not blocked.‬
‭○‬ ‭Async functions always return a promise.‬
‭○‬ ‭If a value is returned that is not a promise, JavaScript‬

‭automatically wraps it in a resolved promise.‬
‭○‬ ‭Example:‬

‭●‬ ‭Await keyword‬
‭○‬ ‭Await keyword is used to wait for a promise to resolve.‬
‭○‬ ‭It can only be used within an async block.‬
‭○‬ ‭Execution pause: Await makes the code wait until the‬

‭promise returns a result, allowing for cleaner and more‬
‭manageable synchronous code.‬

‭○‬ ‭Example:‬

‭Aditya Kharadkar‬

‭37‬

‭Episode 07 - Finding the path‬
‭●‬ ‭If the useEffect hook does not have a dependency array, then it‬

‭will get executed on every render.‬
‭●‬ ‭If the dependency array is empty, the useEffect will be called‬

‭only on initial render (just once when the component renders for‬
‭the first time).‬

‭●‬ ‭If the dependency array is not empty, the useEffect is called‬
‭only when the dependency changes.‬

‭●‬ ‭Never create a state variable using useState outside the‬
‭component (functional component).‬

‭●‬ ‭It is used to create a local state inside a functional component.‬
‭●‬ ‭Never create a state variable inside if conditions since it will‬

‭create inconsistency.‬
‭●‬ ‭Never create state variables inside for loop and functions as well.‬
‭●‬ ‭Always create them at the top of the functional component.‬

‭Routing in React‬

‭●‬ ‭Whenever we want to create routes, we have to create routing‬
‭configuration.‬

‭●‬ ‭CreateBrowserRouter‬‭from‬‭react-router-dom‬‭is used‬‭to create‬
‭the routing configuration.‬

‭●‬ ‭The configuration means an information that tells what will‬
‭happen on a specific route.‬

‭Aditya Kharadkar‬

‭38‬

‭●‬ ‭Example:‬

‭●‬ ‭But just creating the configuration is not enough. We will have to‬
‭provide this configuration to render it on to the page.‬

‭●‬ ‭To do that, we use‬‭RouterProvider‬‭which will provide‬‭the routing‬
‭configuration to the app.‬

‭●‬ ‭Example:‬

‭●‬ ‭We also need a component which will be shown whenever a user‬
‭tries to access an anonymous path.‬

‭Aditya Kharadkar‬

‭39‬

‭●‬ ‭React-router-dom also provides a hook i.e.‬‭useRouteError‬‭which‬
‭gives all the information about the route error.‬

‭●‬ ‭We can show this information to the user on UI.‬

‭Creating children routes‬

‭●‬ ‭Now we have to show the respective component based on its path‬
‭in the <AppLayout /> component.‬

‭●‬ ‭To help us to do that, react-router-dom provides an‬‭outlet‬‭.‬
‭●‬ ‭This outlet gets filled with children when the user tries to access‬

‭a path and shows that component on the UI based on that path.‬

‭Aditya Kharadkar‬

‭40‬

‭Two types of routing‬

‭1.‬ ‭Client side routing‬
‭2.‬ ‭Server side routing‬
‭●‬ ‭In client side routing, the app does not make any network calls‬

‭while navigating from one page to another.‬
‭●‬ ‭Everything happens on the client side.‬
‭●‬ ‭In the server side routing, when a user navigates to a path, the‬

‭browser will reload, make a network call, get the page from the‬
‭server, and then show it on the UI.‬

‭●‬ ‭This is the benefit of single page applications. We have all the‬
‭components on the client side. They just get interchanged based‬
‭on the route.‬

‭Aditya Kharadkar‬

‭41‬

‭Dynamic routing‬

‭●‬ ‭We can extract this‬‭resId‬‭using a hook i.e.,‬‭useParams‬‭from‬
‭react-router-dom.‬

‭●‬ ‭Example:‬‭const { resId } = useParams();‬

‭What should happen if we do console.log(useState()) ?‬

‭●‬ ‭It will display the result of calling the useState() function in our‬
‭browser’s developer console.‬

‭●‬ ‭const [count, setCount] = useState(0); ->‬‭[0, function]‬‭<- output‬

‭Aditya Kharadkar‬

‭42‬

‭What are various ways to add images into our app ? Explain with‬
‭code examples.‬

‭1.‬ ‭Use the import keyword‬

‭2.‬ ‭Using public folder‬
‭a.‬ ‭If we want to reference images in the public folder, we can‬

‭do so without importing them explicitly.‬
‭b.‬ ‭This method is useful for handling large image assets or for‬

‭dynamic image URLs.‬

‭Aditya Kharadkar‬

‭43‬

‭c.‬ ‭Place you image in the public directory ->‬‭public/my-img.jpg‬
‭d.‬ ‭Then reference it in your code.‬

‭‬

‭3.‬ ‭Loading images from a remote source‬
‭a.‬ ‭We can load images from a remote source, such as an‬

‭external URL or a backend API, by specifying the image url‬
‭directly in our img tag.‬

‭const img = ‘‬‭https://example.com/img.jpg‬‭’;‬

‭‬

‭4.‬ ‭Using assets within css‬
‭a.‬ ‭We can also use images as our background images or in other‬

‭css styling.‬

‭Aditya Kharadkar‬

‭44‬

‭Episode 08 - Let’s get classy‬

‭Create a class-based component‬

‭Why do we always have to use super(props) ?‬

‭●‬ ‭The simple answer to this question is that super(props) basically‬
‭allows accessing‬‭this.props‬‭in a constructor function.‬

‭●‬ ‭In fact, what the super() function does is, it calls the constructor‬
‭of the parent class.‬

‭●‬ ‭When we call super(props), we are basically calling the‬
‭constructor of the‬‭React.Component‬‭.‬

‭Aditya Kharadkar‬

‭45‬

‭●‬ ‭So we can say that super() is a reference to the parent class‬
‭constructor i.e.‬‭React.Component‬‭.‬

‭●‬ ‭In the above example, React.Component is also the base class of‬
‭UserClass component.‬

‭●‬ ‭So when we pass props to super(), the props get assigned to‬‭this‬
‭also.‬

‭●‬ ‭So to conclude, if we want to use‬‭this.props‬‭, or simply‬‭this‬
‭keyword inside the constructor, we need to pass the props coming‬
‭from the parent class (React.Component) in super.‬

‭Loading a functional component means we are invoking/mounting that‬
‭function.‬

‭Loading a class-based component means we are creating an instance of‬
‭the class.‬

‭Creating state variables in class-based components.‬

‭●‬ ‭In class-based components, we define state variables in the‬
‭constructor.‬

‭Aditya Kharadkar‬

‭46‬

‭●‬ ‭Instead of using state variables as this.state.count, we can also‬
‭destructure them.‬

‭Updating the state variables.‬

‭Aditya Kharadkar‬

‭47‬

‭●‬ ‭If we have two state variables, and we try to update only one,‬
‭then React will update only that state variable and it will not‬
‭touch the other one.‬

‭Loading component = Mounting the component on a web page.‬

‭Whenever a class loads i.e. a class is instantiated, the constructor of‬
‭the class is called.‬

‭In class-based components, whenever a component loads, a constructor‬
‭is called and then the render() method is called.‬

‭React Lifecycle Method‬

‭Aditya Kharadkar‬

‭48‬

‭How does componentDidMount get executed ?‬

‭1.‬ ‭First the constructor method of parent class gets executed.‬
‭2.‬ ‭Then the render method of the parent class gets executed.‬
‭3.‬ ‭The render method of the parent class encounters the child class‬

‭component. So it goes to that component.‬
‭4.‬ ‭Then the constructor method of child class gets executed.‬
‭5.‬ ‭After that the render() method of the child class gets executed.‬

‭Aditya Kharadkar‬

‭49‬

‭6.‬ ‭Then the componentDidMount() of the child class gets executed.‬
‭7.‬ ‭Then it goes to the parent class component and executes the‬

‭componentDidMount of the parent class component.‬

‭Constructor (Parent) -> render (Parent) -> Constructor (Child) -> render‬
‭(Child) -> componentDidMount (Child) -> componentDidMount(Parent)‬

‭What happens when there are multiple children components in the‬
‭parent class component ?‬

‭●‬ ‭Below is the order of execution.‬
‭a.‬ ‭Constructor (Parent)‬
‭b.‬ ‭Render (Parent)‬
‭c.‬ ‭Constructor (Child 1)‬
‭d.‬ ‭Render (Child 1)‬
‭e.‬ ‭Constructor (Child 2)‬
‭f.‬ ‭Render (Child 2)‬
‭g.‬ ‭componentDidMount (Child 1)‬
‭h.‬ ‭componentDidMount (Child 2)‬
‭i.‬ ‭componentDidMount (Parent)‬

‭●‬ ‭There are 2 phases in the React lifecycle‬
‭a.‬ ‭Render phase‬
‭b.‬ ‭Commit phase‬

‭●‬ ‭The constructor method and render method come under the‬
‭render phase‬‭while componentDidMount comes under the‬‭commit‬
‭phase‬‭.‬

‭●‬ ‭In the commit phase, React updates the DOM.‬
‭●‬ ‭Since updating the DOM is an expensive task, React batches all‬

‭the constructor methods and render methods of children‬

‭Aditya Kharadkar‬

‭50‬

‭components and once there is no more child component, then it‬
‭performs the commit phase.‬

‭●‬ ‭componentDidMount is used to make an API call inside it.‬

‭CreateHashRouter‬

‭●‬ ‭CreateHashRouter is part of the React Router library and‬
‭provides routing capabilities for single-page applications.‬

‭●‬ ‭It’s commonly used for building client-side navigation with‬
‭applications.‬

‭●‬ ‭Unlike traditional server side routing, it uses the fragment‬
‭identifier (hash) in the URL to manage/handle routes on the‬
‭client side.‬

‭●‬ ‭This means that changes in the URL after the # symbol do‬
‭not trigger a full page reload, making it suitable for single‬
‭page applications.‬

‭CreateMemoryRouter‬

‭●‬ ‭CreateMemoryRouter is another routing component provided by‬
‭React router.‬

‭●‬ ‭Unlike CreateHashRouter or BrowserRouter,‬
‭CreateMemoryRouter is not associated with the browser’s URL.‬

‭●‬ ‭Instead it allows you to create an in-memory router for testing‬
‭other scenarios where you don’t want to interact with the actual‬
‭browser’s URL.‬

‭Aditya Kharadkar‬

‭51‬

‭Why can’t we have the callback function of useEffect async ?‬

‭●‬ ‭In React, the useEffect hook is designed to handle the side‬
‭effects in functional components.‬

‭●‬ ‭It’s a powerful and flexible tool for managing asynchronous‬
‭operations, such as data fetching, API calls and more.‬

‭●‬ ‭However, useEffect itself cannot directly accept an async‬
‭callback function.‬

‭●‬ ‭This is because useEffect expects its callback function to return‬
‭either nothing i.e.‬‭undefined‬‭or a cleanup function,‬‭and it doesn’t‬
‭work well with promises returned from the async functions.‬

‭●‬ ‭There are a few reasons for this:‬
‭a.‬ ‭Return value expectation‬

‭■‬ ‭The primary purpose of the useEffect callback‬
‭function is to handle side effects and perform cleanup.‬

‭■‬ ‭React expects us to return either nothing i.e.‬
‭undefined from the callback or return a cleanup‬
‭function.‬

‭■‬ ‭An async function returns a promise, and it doesn’t fit‬
‭well with this expected behavior.‬

‭b.‬ ‭Execution order and timing‬
‭■‬ ‭With async functions, we might not have fine-grained‬

‭control over the execution order of the asynchronous‬
‭code and cleanup code.‬

‭■‬ ‭React relies on the returned cleanup function to‬
‭handle cleanup when the component is unmounted or‬
‭when the dependencies specified in the useEffect‬
‭dependency array change.‬

‭Aditya Kharadkar‬

‭52‬

‭■‬ ‭If you return a promise, React doesn’t know when or‬
‭how to handle the cleanup.‬

‭Aditya Kharadkar‬

‭53‬

‭Episode 09 - Optimizing our app‬

‭What is the Single Responsibility Principle ?‬

‭●‬ ‭If we have a function, a class, or a single entity in our app, it‬
‭should have a single responsibility.‬

‭●‬ ‭For example, <Header> component in our app should have only one‬
‭responsibility i.e. to display the header on the application.‬

‭●‬ ‭If we have a component which is doing multiple things, then we‬
‭should divide that component into multiple components where‬
‭each one of them has a single responsibility.‬

‭●‬ ‭Breaking down the code into small modules ->‬‭Modularity‬

‭What is a custom hook ?‬

‭●‬ ‭A hook is nothing but a‬‭utility function‬‭.‬
‭●‬ ‭Hooks are reusable functions.‬
‭●‬ ‭When you have component logic that needs to be used by multiple‬

‭components, we can extract that logic to a custom hook.‬
‭●‬ ‭A custom hook in React is a JavaScript function that allows you to‬

‭extract and reuse logic involving stateful behavior and side‬
‭effects from function components.‬

‭●‬ ‭Custom hooks enable you to encapsulate common logic in a way‬
‭that can be shared across multiple components, promoting code‬
‭reuse and better organization.‬

‭●‬ ‭Why use custom hooks ?‬
‭a.‬‭Code Reusability:‬‭Custom hooks allow you to reuse‬‭stateful‬

‭logic across different components without duplicating code.‬

‭Aditya Kharadkar‬

‭54‬

‭b.‬‭Cleaner Components:‬‭By extracting complex logic into‬
‭custom hooks, you can keep your components smaller and‬
‭more focused on rendering.‬

‭c.‬‭Separation of Concerns:‬‭Custom hooks help separate‬‭the‬
‭logic from the UI, making your code easier to manage and‬
‭understand.‬

‭Aditya Kharadkar‬

‭55‬

‭Above is the component which performs 2 tasks:‬

‭1.‬ ‭Fetch data from the API‬
‭2.‬ ‭Display data on the webpage‬

‭We can have this component only to display the data on the web page‬
‭and can create a custom hook which fetches the data.‬

‭Our Custom Hook‬

‭Aditya Kharadkar‬

‭56‬

‭Home Component‬

‭●‬ ‭In the above example, I have moved the logic of fetching data‬
‭into a custom hook i.e.‬‭useDemo‬‭.‬

‭●‬ ‭Then I imported the custom hook useDemo into the Home‬
‭component and used destructuring to get the itemDetails which is‬
‭returned from the useDemo() hook.‬

‭●‬ ‭Because of this, my Home component only has one responsibility‬
‭which is to display the data.‬

‭●‬ ‭The Home Component became clean since all the logic of fetching‬
‭data is now moved into the custom hook.‬

‭Aditya Kharadkar‬

‭57‬

‭Create a custom hook to see if the user is online or offline‬

‭The above hook checks if the user is online or offline using the window‬
‭object and the callback function sets the value of isOnline and the hook‬
‭then returns the value.‬

‭This value can be extracted into another component by importing the‬
‭useOnlineStatus() hook in it.‬

‭Aditya Kharadkar‬

‭58‬

‭Why should we name our hook as “useOnlineStatus” ?‬

‭●‬ ‭It is a naming convention for custom hooks which is followed by‬
‭most of the companies.‬

‭●‬ ‭A lot of companies use a linter which throws an error if the‬
‭custom hooks are not named like this.‬

‭●‬ ‭It is a good practice to use the word‬‭use‬‭while naming‬‭the custom‬
‭hook.‬

‭●‬ ‭If someone else sees the code, they will get to know that this is‬
‭not a normal function but a React hook.‬

‭When we are building a large-scaled application, it is important to‬
‭break it down into different components (Bundles).‬

‭Having a single bundle will make our app slower since a single bundle will‬
‭contain all the code of the application which takes a lot of time to load.‬

‭The solution for this is to split our app into smaller chunks (bundles).‬
‭This process is known as below terms:‬

‭1.‬ ‭Chunking‬
‭2.‬ ‭Code Splitting‬
‭3.‬ ‭Dynamic Bundling‬
‭4.‬ ‭Lazy Loading‬
‭5.‬ ‭On demand loading‬

‭For example, if we are developing an e-commerce application. This‬
‭ecommerce app will have a cart which will contain different‬
‭functionalities.‬

‭So we can create a separate bundle for the Cart component.‬

‭Aditya Kharadkar‬

‭59‬

‭This bundle will not be loaded initially. It will be loaded only when the‬
‭user visits the cart page.‬

‭That means, with this approach the app will have 2 bundles. One would‬
‭be a normal bundle which contains all the code of the app except for‬
‭the cart component. This bundle will be loaded when the user visits our‬
‭app.‬

‭The other bundle will contain the code of the cart component which will‬
‭be loaded only when the user visits the shopping cart.‬

‭That is why this process is also known as‬‭on demand‬‭loading‬‭.‬

‭When and why do we need lazy() ?‬

‭●‬ ‭In simpler terms, lazy loading is a design pattern.‬
‭●‬ ‭It allows you to load parts of your application on demand to‬

‭reduce the initial load time.‬
‭●‬ ‭For example, you can initially load the components and modules‬

‭related to user login and registration. Then you can load the rest‬
‭of the components based on user navigation.‬

‭●‬ ‭You might not feel much difference when using lazy loading for‬
‭small-scaled applications. But it significantly impacts large scaled‬
‭applications by reducing the initial load time.‬

‭●‬ ‭Ultimately it improves both the use experience and application‬
‭performance.‬

‭Aditya Kharadkar‬

‭60‬

‭Advantages of Lazy loading‬

‭1.‬ ‭Reduces the initial load time by reducing the bundle size.‬
‭2.‬ ‭Reduces browser workload.‬
‭3.‬ ‭Improves application performance in low-band width situations.‬
‭4.‬ ‭Improves user experience at initial loading.‬
‭5.‬ ‭Optimizes resource usage.‬

‭Disadvantages of lazy loading‬

‭1.‬ ‭Not suitable for small scale applications.‬
‭2.‬ ‭Placeholder can slow down quick scrolling.‬
‭3.‬ ‭Requires additional communication with the server to fetch‬

‭resources.‬
‭4.‬ ‭Can affect SEO and ranking.‬

‭Example‬

‭●‬ ‭When we use lazy() on a component which fetches the API‬
‭response, React can give us an error i.e.‬‭A component‬‭suspended‬
‭while responding to synchronous input‬‭.‬

‭●‬ ‭To avoid or handle this error, React offers a component i.e.‬
‭Suspense.‬

‭Aditya Kharadkar‬

‭61‬

‭Suspense‬

‭●‬ ‭Suspense is a built-in React component which lets you temporarily‬
‭render a fallback UI while its children are still loading.‬

‭●‬ ‭If a component tries to retrieve the API response, while it does‬
‭that, we can show a fallback UI to the user until we get the API‬
‭response.‬

‭●‬ ‭This fallback UI could be a shimmer UI as well.‬
‭●‬ ‭We can just wrap the lazy loaded component inside the‬

‭<Suspense> component.‬
‭●‬ ‭This <Suspense> component has a property i.e.‬‭fallback‬‭which‬

‭takes the component which must be rendered until we get the‬
‭API response in this case.‬

‭When and why do we need Suspense ?‬

‭●‬ ‭Suspense is best used when you want to display a fallback while‬
‭waiting for something to load.‬

‭●‬ ‭The two main use cases for this are when you are waiting for data‬
‭to be fetched from an API after the initial page load and when‬
‭you are lazy loading other React components.‬

‭Aditya Kharadkar‬

‭62‬

‭Episode 10 - Jo dikhta hai wo bikta hai‬

‭Explore all the ways of writing CSS‬

‭1.‬ ‭Inline CSS‬

‭// Better approach -> create an object which contains all the‬
‭// styles and then assign it to the style attribute‬

‭Aditya Kharadkar‬

‭63‬

‭2.‬ ‭Importing external stylesheet‬
‭a.‬ ‭Create a new css file in your project directory.‬
‭b.‬ ‭Write css.‬
‭c.‬ ‭Import it into the React file.‬

‭3.‬ ‭Use CSS Modules.‬
‭a.‬ ‭A CSS module stylesheet is similar to the regular‬

‭stylesheet, only with a different extension (e.g.‬
‭styles.module.css).‬

‭b.‬ ‭Create a file with .module.css extension.‬
‭c.‬ ‭Import the module in React app.‬
‭d.‬ ‭Add a class name to an element or component and reference‬

‭the particular style from the imported styles.‬

‭Aditya Kharadkar‬

‭64‬

‭Use Styled Components‬

‭●‬ ‭Install the styled-components npm package in the command line.‬

‭●‬ ‭Create a component and assign a styled property to it. Note the‬
‭use of template literals denoted by backticks in the wrapper‬
‭object.‬

‭Aditya Kharadkar‬

‭65‬

‭Conditional Styling‬

‭Aditya Kharadkar‬

‭66‬

‭How do we configure tailwind ?‬

‭1.‬ ‭Install‬‭tailwindcss‬‭and its peer dependencies via‬‭npm and create‬
‭your‬‭tailwind.config.js‬‭file.‬

‭2.‬ ‭Add‬‭tailwindcss‬‭and‬‭autoprefixer‬‭to your‬‭postcss.config.js‬‭file,‬
‭or whatever postCSS is configured in your project.‬

‭3.‬ ‭Add the paths to all of your template files in your‬
‭tailwind.config.js‬‭file.‬

‭Aditya Kharadkar‬

‭67‬

‭4.‬ ‭Add the‬‭@tailwind‬‭directives for each of tailwind’s layers to your‬
‭main css file.‬

‭5.‬ ‭Run your build process with npm run dev or whatever command is‬
‭configured in your package.json file.‬

‭6.‬ ‭Make sure your compiled css is included in the‬‭head‬‭.‬

‭Aditya Kharadkar‬

‭68‬

‭In tailwind.config.js, what does all the keys mean (content, theme,‬
‭extend, plugins)?‬

‭1.‬‭Content:‬‭This key specifies the paths to all of your‬‭template files‬
‭in your project. Tailwind CSS will scan these files for class names‬
‭and generate only the necessary styles. This helps keep the final‬
‭CSS file small and optimized.‬

‭2.‬‭Theme:‬‭This key is used to customize the default theme‬‭of‬
‭Tailwind CSS. You can define your own values for colors, fonts,‬
‭spacing, and more.‬

‭3.‬‭Extend:‬‭This key is used inside the‬‭theme‬‭key to extend‬‭the‬
‭default theme without completely overriding it. This is useful for‬
‭adding additional utilities or modifying existing ones.‬

‭4.‬‭Plugins:‬‭This key allows you to add plugins to Tailwind‬‭CSS. Plugins‬
‭can add additional utilities, components, or modify the existing‬
‭ones. Tailwind CSS has a variety of official plugins, or you can‬
‭create your own.‬

‭Why do we have a .postcssrc file ?‬

‭The .postcssrc file (or postcss.config.js file in some setups) is used to‬
‭configure PostCSS, a tool for transforming CSS with JavaScript‬
‭plugins. PostCSS is often used in conjunction with Tailwind CSS to‬
‭enable additional CSS processing capabilities. Here’s why you might‬
‭have a .postcssrc file:‬

‭1.‬‭postCSS plugins:‬‭PostCSS is a powerful tool that can‬‭use a‬
‭variety of plugins to perform different tasks, such as‬

‭Aditya Kharadkar‬

‭69‬

‭autoprefixing, minifying CSS, and more. The .postcssrc file‬
‭specifies which plugins to use and their configurations.‬

‭2.‬‭Tailwind CSS Integration:‬‭Tailwind CSS is a PostCSS‬‭plugin. The‬
‭.postcssrc file ensures that Tailwind CSS is processed correctly‬
‭during the build process.‬

‭3.‬‭Autoprefixing:‬‭Autoprefixer is a PostCSS plugin that‬‭adds‬
‭vendor prefixes to CSS rules, ensuring compatibility with‬
‭different browsers. Including it in your .postcssrc file helps‬
‭maintain cross-browser compatibility.‬

‭4.‬‭CSS Minification and Optimization:‬‭You can use plugins‬‭like‬
‭cssnano‬‭for minifying and optimizing your CSS. This‬‭is‬
‭particularly useful for production builds to reduce the file size.‬

‭5.‬‭Modularity and Maintainability:‬‭Having a dedicated‬
‭configuration file for PostCSS allows for better modularity and‬
‭maintainability. It separates PostCSS-related configurations‬
‭from other parts of your build setup, making it easier to manage‬
‭and update.‬

‭Aditya Kharadkar‬

‭70‬

‭Episode 11 - Data is the new oil‬

‭Higher Order Components‬

‭●‬ ‭Higher order component is a function that takes a component and‬
‭returns a component.‬

‭●‬ ‭It takes a component as an input, enhances that component, adds‬
‭some features into it and returns the component.‬

‭●‬ ‭Higher order components are pure functions because they do not‬
‭change the existing behavior of the input component.‬

‭Aditya Kharadkar‬

‭71‬

‭Controlled and Uncontrolled components‬

‭1.‬‭Uncontrolled Components‬
‭a.‬ ‭If a component is managing its own state and controlling the‬

‭behavior on its own then the component will be known as‬
‭Uncontrolled component.‬

‭b.‬ ‭The parent component will have no power or control over‬
‭this component and hence it will be known as an uncontrolled‬
‭component.‬

‭c.‬ ‭In the above example, the <ItemCard /> component is a child‬
‭component of the <ItemCardList /> component.‬

‭Aditya Kharadkar‬

‭72‬

‭d.‬ ‭The <ItemCard /> component has a state variable i.e.‬
‭showHeading‬‭which has a default value‬‭false‬‭. This‬‭value gets‬
‭changed when the button is clicked by the user.‬

‭e.‬ ‭If the showHeading is true then the‬‭Hello‬‭message‬‭will be‬
‭shown, if it is false then the message will be hidden.‬

‭f.‬ ‭Now this component manages its own state and behavior and‬
‭it does not depend on its parent component. Hence it is‬
‭referred to as an‬‭uncontrolled component‬‭.‬

‭2.‬‭Controlled Component‬
‭a.‬ ‭If the state and behavior of a component is being managed‬

‭by its parent component, then it is referred to as the‬
‭controlled component‬‭.‬

‭b.‬ ‭In the above example, the <ItemCard /> component does not‬
‭have any state variable to manage.‬

‭Aditya Kharadkar‬

‭73‬

‭c.‬ ‭Instead, the value of showHeading is being sent from the‬
‭parent component <ItemCardList /> and is being received by‬
‭the <ItemCard /> component via props.‬

‭d.‬ ‭Since the <ItemCardList /> component is now controlling the‬
‭<ItemCard /> component, the <ItemCard /> is now referred‬
‭to as the‬‭Controlled Component‬‭.‬

‭Lifting the state up‬

‭●‬ ‭In the above example, the <ItemCard /> component does not‬
‭control its own state, instead it is controlled by its parent‬
‭component <ItemCardList />.‬

‭●‬ ‭But with the currently implemented code, we can not change the‬
‭state by clicking the button because the parent component has no‬
‭way to know about the user's interaction with the button.‬

‭●‬ ‭To do that, we need to let the parent component know when the‬
‭button is clicked so that it can change the value of the state‬
‭variable i.e.‬‭showHeading‬‭.‬

‭●‬ ‭This can be achieved by‬‭lifting the state up‬‭.‬
‭●‬ ‭In the below example, we pass a function as a prop i.e.‬‭onShow‬‭to‬

‭the child component i.e. <ItemCard /> from the parent component‬
‭i.e. <ItemCardList /> which sets the value of the state variable‬
‭showHeading‬‭.‬

‭●‬ ‭In the child component, we use the‬‭onShow‬‭prop and‬‭pass it as a‬
‭function to the onClick event in the button element.‬

‭●‬ ‭This will let the parent component know that the user has clicked‬
‭the button. Then the value of the‬‭showHeading‬‭state‬‭variable will‬
‭be changed.‬

‭Aditya Kharadkar‬

‭74‬

‭Note - React has a one-way data stream. That means the data flows‬
‭into one direction i.e. from parent component to child component.‬

‭Props Drilling‬

‭●‬ ‭Passing props is a great way to explicitly pipe data through your‬
‭UI tree to the components that use it.‬

‭●‬ ‭But passing props can become inconvenient when there is a huge‬
‭tree of components which has a parent component having children‬

‭Aditya Kharadkar‬

‭75‬

‭components and these children components are also parents to‬
‭their children components.‬

‭●‬ ‭In this case, lifting the state up can lead to a situation called‬
‭Prop Drilling‬‭.‬

‭What is React Context ?‬

‭●‬ ‭React context is a method to pass props from parent to child‬
‭components, by storing the props in a store (similar in redux) and‬
‭using these props from the store by child components without‬
‭actually passing them manually at each level of the component‬
‭tree.‬

‭●‬ ‭Using Redux to interact with states from parent to child‬
‭components is not only quite difficult to understand but also gives‬
‭you more complex code.‬

‭●‬ ‭Through the usage of context, the understanding of concept and‬
‭code is far easier than that of Redux.‬

‭●‬ ‭Whenever you want a store to keep your states or variables in and‬
‭use them elsewhere in your program, use‬‭Context‬‭.‬

‭●‬ ‭Generally when we have two or more levels (height) in our‬
‭component tree, it is viable to use a store instead of passing‬
‭props and then lifting the state as this will create confusion and‬
‭unnecessary lengthy code.‬

‭Aditya Kharadkar‬

‭76‬

‭Create and provide the context‬

‭●‬ ‭In the above code, a context is created using the‬‭createContext‬
‭which is imported from‬‭react‬‭.‬

‭●‬ ‭We have given a default value this i.e. an object which has a list‬
‭named‬‭items‬‭.‬

‭●‬ ‭We can pass any value to the context while creating it such as a‬
‭string, number, list, object, etc.‬

‭●‬ ‭This context is now assigned to a variable named‬‭CartContext‬
‭which is being exported to use in other components.‬

‭●‬ ‭In the above code, the CartContext is imported in the <App />‬
‭component and is being used as a wrapper of the <Header /> and‬
‭<Body /> component.‬

‭●‬ ‭This will make the context available to access for the application.‬

‭Aditya Kharadkar‬

‭77‬

‭●‬ ‭createContext returns a context object.‬
‭●‬ ‭The context object itself does not hold any information.‬
‭●‬ ‭It represents which context other components read or provide.‬
‭●‬ ‭The context object has a few properties:‬

‭○‬ ‭SomeContext.Provider‬‭: lets you provide the context‬‭value to‬
‭components.‬

‭○‬ ‭SomeContext.Consumer‬‭: is an alternative and rarely‬‭used‬
‭way to read the context value.‬

‭●‬ ‭The above code will still throw an error because we also need to‬
‭pass a default value to the Provider.‬

‭Consuming the Context‬

‭Aditya Kharadkar‬

‭78‬

‭●‬ ‭To consume the context, we make use of the‬‭useContext‬‭hook.‬
‭●‬ ‭useContext returns the‬‭context value‬‭for the context‬‭you‬

‭passed.‬
‭●‬ ‭To determine the context value, React searches the component‬

‭tree and finds the closest context provider above for that‬
‭particular context.‬

‭Note - It is suggested to use Context in small and mid-size applications.‬
‭In the large-scale applications, we can make use of‬‭Redux‬‭.‬

‭Aditya Kharadkar‬

‭79‬

‭Episode 12 - Let’s Build Our Store‬

‭Introduction‬

‭Note - Redux is not mandatory to use in our application.‬

‭When we build large-scale applications where we have to manage the‬
‭state of a lot of components and the application has a number of‬
‭features, then using‬‭Redux‬‭in our application makes‬‭sense.‬

‭In small-scale or mid-scale applications, we can still manage the state‬
‭without using Redux.‬

‭Redux and React both are not the same thing. Redux is not part of‬
‭React. They both are different libraries.‬

‭All the applications built using Redux can also be built without using it.‬

‭Redux is not the only library for state management. There is also‬
‭another library named‬‭Zustand‬‭.‬

‭Just like we have React Dev Tools, we also have Redux Dev Tools which‬
‭help us to debug our application when we use Redux.‬

‭There are 2 libraries that Redux team offers:‬

‭1.‬ ‭react-redux: This is like a bridge between React and Redux.‬
‭2.‬ ‭Redux toolkit: This is a newer way of writing redux. This package‬

‭is intended to be the standard way of writing Redux logic.‬

‭Redux Store‬‭is like a very big JavaScript object,‬‭which has a lot of‬
‭data in it, stored in a global central space.‬

‭Is it a good idea to store all the data in one place ?‬‭Yes‬

‭Aditya Kharadkar‬

‭80‬

‭Since the Redux store contains a lot of data, we do not want it to‬
‭become very big, so we make use of‬‭Slices‬‭offered‬‭by Redux.‬

‭We can assume‬‭slice as a small portion of Redux store.‬‭We can‬
‭create multiple slices in our store.‬

‭To keep data separate, we create logical partitions in our store. These‬
‭partitions are known as‬‭Slices‬‭.‬

‭If we want to keep the data related to the cart, then we will create a‬
‭separate slice for the cart. If we want to keep the data related to the‬
‭logged in user, then we will create a separate slice for that as well.‬

‭Redux says that we cannot directly modify the data in the slice. Redux‬
‭offers a way to do that.‬

‭Assume that we have a cartSlice which keeps track of the data in the‬
‭cart. We have an Add‬‭to cart‬‭button which adds the‬‭item into the cart.‬
‭By clicking on this button, we cannot directly modify our cartSlice.‬

‭To modify the cartSlice, when the user clicks on the Add To Cart‬
‭button, we have to‬‭dispatch an action‬‭.‬

‭When we dispatch an action,‬‭it calls a function and‬‭then this function‬
‭modifies the cart‬‭.‬

‭Here is the flow:‬

‭User clicks the button —> Dispatch an action —> Action calls a‬
‭function —> Function modifies the cart slice‬

‭The function which is being called by the action is known as‬
‭Reducer Function‬‭.‬

‭Aditya Kharadkar‬

‭81‬

‭So when the user clicks the button, it dispatches an action. This action‬
‭calls the reducer function and this reducer function updates the slice.‬

‭********This was about writing the data into the store.**********‬

‭How to read data from the store ?‬

‭Suppose I want to show the count of items in the cart on my navigation‬
‭bar.‬

‭We can read the data from the store by something known as‬‭Selectors‬‭.‬

‭When we use a selector to read the data, this phenomenon is known as‬
‭Subscribing to the store‬‭.‬

‭So we can say that the navigation bar is subscribed to our store. That‬
‭means the navigation bar will alway be in sync with the store. If the‬
‭data in the store (cart slice in this case) changes, then the data shown‬
‭on the navigation bar will also change.‬

‭Aditya Kharadkar‬

‭82‬

‭Install Redux‬

‭npm install @reduxjs/toolkit‬

‭npm install react-redux‬

‭Create/Configure the store‬

‭Providing the store to the application‬

‭●‬ ‭Configuring the store is Redux’s job. That’s why we imported‬
‭configureStore‬‭from‬‭@reduxjs/toolkit‬‭.‬

‭Aditya Kharadkar‬

‭83‬

‭●‬ ‭Providing this store to the application is the job of‬‭react-redux‬‭.‬
‭That’s why we imported‬‭Provider‬‭from‬‭react-redux‬‭.‬

‭●‬ ‭We then use this‬‭<Provider></Provider>‬‭as a wrapper‬‭to wrap our‬
‭application inside it.‬

‭●‬ ‭Provider takes a property‬‭store‬‭to which we can assign‬‭our‬
‭configured store.‬

‭Create a slice‬

‭●‬ ‭createSlice()‬‭returns an object which has following‬‭properties:‬
‭○‬ ‭Name‬
‭○‬ ‭Initial state‬
‭○‬ ‭Reducers‬

‭●‬ ‭The initialState is the state which a slice has in the beginning‬
‭before it gets modified.‬

‭●‬ ‭Reducers have actions and these actions have callback functions.‬

‭Aditya Kharadkar‬

‭84‬

‭●‬ ‭addItem‬‭is a reducer function which is called as an‬‭action‬‭.‬
‭●‬ ‭The function which is assigned to it is responsible for modifying‬

‭or updating the cartSlice.‬
‭●‬ ‭We have exported the reducer as a default export.‬
‭●‬ ‭We have also exported the actions from the slice.‬
‭●‬ ‭The payload of the action will contain a new item in this case‬

‭which will be pushed to the items array in the state.‬

‭Add the slice to the store‬

‭●‬ ‭The reducer key is assigned with an object which will have all the‬
‭slices (cartSlice in this case).‬

‭●‬ ‭The reducer contains the slices where each of the slices contains‬
‭its own reducer functions.‬

‭Subscribing to the store‬

‭●‬ ‭We can subscribe to the store using a selector to read the data‬
‭of the store.‬

‭●‬ ‭Redux offers a hook named‬‭useSelector‬‭which can be‬‭used to‬
‭subscribe to the store.‬

‭Aditya Kharadkar‬

‭85‬

‭●‬ ‭This useSelector gives us access to the store where we can find‬
‭the cart.items.‬

‭●‬ ‭The items of the cart will be stored in‬‭cartItems‬‭which we can‬
‭use in our component.‬

‭●‬ ‭Note - Make sure to access a particular state variable. In our‬
‭case, we have accessed cart.items which gives us the exact value‬
‭of items.‬

‭●‬ ‭If we subscribe only to‬‭store.cart‬‭, sometimes this‬‭store.cart may‬
‭contain state variables other than‬‭items‬‭.‬

‭●‬ ‭If there is a change in any of those state variables, then it will‬
‭re-render the‬‭cart component‬‭as well.‬

‭●‬ ‭So subscribing only to‬‭store.cart.items‬‭will make‬‭the Cart‬
‭component re-render only when there is a change in the‬‭items‬‭.‬

‭Aditya Kharadkar‬

‭86‬

‭Dispatch an action‬

‭●‬ ‭React-redux offers a hook to dispatch an action i.e.‬‭useDispatch‬‭.‬
‭This hook returns a function i.e.‬‭dispatch()‬‭.‬

‭●‬ ‭The dispatch() function takes an argument i.e.‬‭addItem‬‭action.‬
‭●‬ ‭The addItem action has a reducer function which takes one‬

‭argument i.e.‬‭payload (apple)‬‭.‬
‭●‬ ‭When an action is dispatched, an object is created. This object‬

‭has a key i.e.‬‭payload‬‭and it will have the value‬‭which is passed to‬
‭the reducer function i.e.‬‭apple‬‭.‬

‭Aditya Kharadkar‬

‭87‬

‭●‬ ‭{‬
‭Payload: “apple”,‬

‭}‬
‭●‬ ‭The‬‭handleAddItem‬‭will be responsible for dispatching‬‭the action‬

‭and it is assigned to the click event of the button. So whenever‬
‭the user clicks the button, the‬‭addItem‬‭action will‬‭be dispatched‬
‭and it will add that item to the cart.‬

‭onClick={handleAddItem} vs onClick={() => handleAddItem(item)} vs‬
‭onClick={handleAddItem(item)}‬

‭1.‬‭onClick={handleAddItem}‬
‭a.‬ ‭This syntax assigns the‬‭handleAddItem‬‭function directly‬‭to‬

‭the‬‭onClick‬‭event.‬
‭b.‬ ‭When the button is clicked, the handleAddItem function will‬

‭be called without any arguments.‬
‭2.‬‭onClick={() => handleAddItem(item)}‬

‭a.‬ ‭This syntax uses an arrow function to call handleAddItem‬
‭with the‬‭item‬‭argument.‬

‭b.‬ ‭This is useful when you need to pass specific arguments to‬
‭the handleAddItem function when the button is clicked.‬

‭c.‬ ‭Here, the‬‭item‬‭needs to be defined or in scope when‬‭the‬
‭button is rendered.‬

‭d.‬ ‭If‬‭item‬‭is a variable available in the component’s‬‭context, it‬
‭will be passed to handleAddItem when the button is clicked.‬

‭3.‬‭onClick={handleAddItem(item)}‬
‭a.‬ ‭This syntax is incorrect and will not work as expected.‬

‭Aditya Kharadkar‬

‭88‬

‭b.‬ ‭Here, handleAddItem(item) is immediately invoked when the‬
‭component renders, rather than being set as a callback to‬
‭be invoked on the click event.‬

‭c.‬ ‭The return value of handleAddItem(item) (which is typically‬
‭undefined‬‭unless the function returns another function)‬‭will‬
‭be assigned to‬‭onClick‬‭.‬

‭d.‬ ‭To properly call handleAddItem with an argument when the‬
‭button is clicked, you should wrap it in an anonymous‬
‭function, like in the second example.‬

‭In older redux (vanilla redux), it was not allowed to mutate the state.‬

‭We used to create a copy of our state and then modify that. We also‬
‭had to return the new state.‬

‭This whole process is still done by Redux behind the scenes but now it‬
‭is not asking developers to do it. Redux is using the‬‭immer‬‭library to do‬
‭it.‬

‭In the new redux, we have to mutate the state. And it is not mandatory‬
‭to return the state as well.‬

‭Aditya Kharadkar‬

‭89‬

‭Episode 13 - Time for Test‬

‭Types of Testing‬

‭●‬ ‭Unit Testing‬
‭●‬ ‭Integration Testing‬
‭●‬ ‭End-to-End Testing (e2e testing)‬

‭1.‬‭Unit Testing‬
‭a.‬ ‭Unit Testing is a fundamental aspect of software testing‬

‭where‬‭individual components or functions of an application‬
‭are tested in isolation‬‭.‬

‭b.‬ ‭This method ensures that each unit of the application‬
‭performs as expected.‬

‭c.‬ ‭By focusing on small, manageable parts of the application,‬
‭unit testing helps identify and fix bugs early in the‬
‭development process, significantly improving code quality‬
‭and reliability.‬

‭d.‬ ‭Unit tests are typically automated and written by‬
‭developers.‬

‭2.‬‭Integration Testing‬
‭a.‬ ‭Integration testing is a software testing process where‬

‭software components, modules, or units are tested‬‭to‬
‭evaluate system compliance concerning functional‬
‭requirements.‬

‭Aditya Kharadkar‬

‭90‬

‭b.‬ ‭This testing phase is crucial to ensure seamless interactions‬
‭among various units/components, their functionalities and‬
‭how well they can operate as a single entity.‬

‭3.‬‭End-to-End Testing‬
‭a.‬ ‭In e2e testing, the application is tested from the moment‬

‭the user starts using the application to the moment user‬
‭leaves the application.‬

‭b.‬ ‭In this testing, we test the complete flow of the application‬
‭from beginning to the end.‬

‭React Testing Library (RTL)‬

‭●‬ ‭React Testing Library‬‭builds on top of‬‭DOM Testing‬‭Library‬‭by‬
‭adding APIs for working with React components.‬

‭●‬ ‭React Testing Library‬‭Jest‬‭uses behind the scenes.‬
‭●‬ ‭Jest is a delightful JavaScript Testing Framework with a focus‬

‭on simplicity.‬
‭●‬ ‭It works with projects using: Babel, TypeScript, Node, React,‬

‭Angular, Vue and more!‬

‭Install React Testing Library‬

‭npm install -D @testing-library/react‬

‭Install Jest‬

‭npm install -D jest‬

‭We are using jest with Babel, hence we need to install some‬
‭dependencies as well.‬

‭npm install –D babel-jest @babel/core @babel/preset-env‬

‭Aditya Kharadkar‬

‭91‬

‭Once we install the dependencies, we have to‬‭configure babel‬‭as well.‬

‭Create‬‭babel.config.js‬‭file and below code in it:‬

‭***‬

‭We are using parcel and parcel uses babel. So Parcel has its own‬
‭configuration of babel already.‬

‭When we created babel.config.js, we were creating our own‬
‭configuration of babel which conflicts with the existing configuration‬
‭of babel.‬

‭The new configuration of babel will overwrite the existing‬
‭configuration done by Parcel. To avoid this, we should refer to the‬
‭official documentation of‬‭Parcel - Usage with other‬‭tools‬‭.‬

‭As per the documentation, we have to create a file‬‭.parcelrc‬‭and below‬
‭configuration:‬

‭Aditya Kharadkar‬

‭92‬

‭When we do this configuration, babel.config.js will not conflict with the‬
‭Parcel’s configuration for babel.‬

‭The above configuration will disable default babel transpilation‬
‭configured by Parcel. Now we can use our own config file for Babel.‬

‭Command to run test cases -‬‭npm run test‬

‭Configure Jest‬

‭Initialize Jest -‬‭npx jest –init‬

‭Answer a few questions for initializing Jest‬

‭1.‬ ‭Would you like to use TypeScript for the configuration file? -> no‬
‭(in this case)‬

‭2.‬ ‭Choose the test environment that will be used for testing ->‬
‭jsdom (browser-like)‬

‭a.‬ ‭JSDOM is a library which parses and interacts with‬
‭assembled HTML just like a browser.‬

‭b.‬ ‭When we run test cases, we do not run them on the browser.‬
‭But we need a browser-like environment to run them.‬

‭c.‬ ‭JSDOM helps us to get a browser-like environment. It will‬
‭give us the features of a browser.‬

‭3.‬ ‭Do you want to add coverage reports? -> Yes‬
‭4.‬ ‭Which provider should be used to instrument code for coverage?‬

‭-> Babel‬
‭5.‬ ‭Automatically clear mock calls, instances, contexts and results‬

‭before every test? -> Yes‬

‭Note - If we are using Jest version 28 or later with React Testing‬
‭Library, jest-environment-jsdom now must be installed separately.‬

‭Aditya Kharadkar‬

‭93‬

‭Install jest-environment-jsdom‬

‭npm install -D jest-environment-jsdom‬

‭Basics of Testing‬

‭Test a function which returns the sum of 2 numbers‬

‭Approach 1:‬‭Create a folder named‬‭__tests__‬‭.‬‭Jest‬‭will track all the‬
‭files from this folder‬‭and execute the test cases.‬‭Jest‬‭will consider all‬
‭the files in this folder as test files‬‭.‬

‭Approach 2:‬‭Suppose we have a file‬‭sum.js‬‭. If the‬‭name of the file in‬
‭which you have written test cases matches any of the below filenames,‬
‭then it will be considered as a test file.‬

‭1.‬ ‭sum.test.js‬
‭2.‬ ‭sum.test.ts‬
‭3.‬ ‭sum.spec.js‬
‭4.‬ ‭sum.spec.ts‬

‭Aditya Kharadkar‬

‭94‬

‭●‬ ‭Create a file named‬‭sum.test.js.‬
‭●‬ ‭Import the‬‭sum()‬‭function from sum.js.‬
‭●‬ ‭We use the‬‭test()‬‭function to write test cases.‬
‭●‬ ‭The‬‭test()‬‭function has 2 argument:‬

‭○‬ ‭Description of the test case‬
‭○‬ ‭A callback function which tests the function‬

‭●‬ ‭Inside the test() function, we call the sum() function by passing 2‬
‭arguments 14 and 14 and store its result into the variable.‬

‭●‬ ‭Then we use the‬‭expect()‬‭function and pass the variable‬‭result as‬
‭an argument. Then we use the‬‭toBe()‬‭function and pass‬‭the value‬
‭which we expect to be the result of the sum() function.‬

‭●‬ ‭This whole statement is known as‬‭assertion‬‭. This means‬‭that we‬
‭are expecting the result to be 28.‬

‭●‬ ‭If the sum() function returns 28, then the test case will pass.‬
‭Otherwise it will fail.‬

‭Testing React Component‬

‭We will test if the component is rendered on not.‬

‭To test this, we first have to‬‭render the component on‬‭JSDOM‬‭. We‬
‭will test if <Home /> component is rendered or not.‬

‭Aditya Kharadkar‬

‭95‬

‭●‬ ‭We first imported the‬‭render‬‭function from the react testing‬
‭library since we have to render the <Home /> component on‬
‭JSDOM.‬

‭●‬ ‭Then we imported the‬‭screen‬‭object from the react testing‬
‭library. Whatever is rendered on the JSDOM can be accessed‬
‭using the screen object.‬

‭●‬ ‭Inside the test function, we first rendered the component.‬
‭●‬ ‭Then we know that <Home /> component has an <h1> element. So‬

‭we can say that if we find the heading (<h1>) element rendered on‬
‭the JSDOM, that means the component is rendered.‬

‭●‬ ‭So to access the heading, we use the‬‭screen‬‭object. Then this‬
‭screen object has a method‬‭getByRole()‬‭which can be used to find‬
‭an element by its role.‬

‭●‬ ‭In this case we have specified the role as‬‭heading‬‭because we are‬
‭finding an <h1> element. This found element will be stored in the‬
‭constant variable‬‭heading‬‭.‬

‭●‬ ‭Then we use the‬‭expect()‬‭function to expect our heading to be‬
‭present in the document. This can be done using the‬
‭toBeInTheDocument()‬‭method which tells us if the element‬
‭exists in the document or not.‬

‭Aditya Kharadkar‬

‭96‬

‭●‬ ‭Then we can run our command‬‭npm run test‬‭to test the‬
‭component. When we do that, we will get the below error:‬

‭This error says that we can not use JSX inside our test case. JSX‬
‭isn’t enabled for our test cases. The error also says that to make‬
‭the JSX work, we have to add @babel/preset-react.‬

‭Install @babel/preset-react‬

‭npm install -D @babel/preset-react‬

‭Include @babel/preset-react inside babel config file.‬

‭Why do we need to add this in the config file ?‬
‭@babel/preset-react is helping to convert JSX into HTML.‬

‭Now when we run npm run test, we will get another error.‬

‭Aditya Kharadkar‬

‭97‬

‭The error says that‬‭toBeInTheDocument() is not a function.‬‭This‬
‭happened because we have to install one more library i.e.‬
‭@testing-library/jest-dom‬

‭Install @testing-library/jest-dom‬

‭npm install -D @testing-library/jest-dom‬

‭We need to import this library in our test file.‬

‭Now when we run the command npm run test, this time our test‬
‭cases will be passed.‬

‭Aditya Kharadkar‬

‭98‬

‭Write a test case to check if the button is present in the‬
‭document or not.‬

‭This is the component to be tested.‬

‭Now I have specified the‬‭role as a button‬‭.‬

‭Aditya Kharadkar‬

‭99‬

‭Another way of finding the button‬

‭The text of the button in the <Home /> component is‬‭Click‬‭. So if it‬
‭finds this work anywhere in the document, then it will be considered as‬
‭a button.‬

‭This can be done using the‬‭getByText()‬‭method. We can search using a‬
‭specific text in the document.‬

‭Aditya Kharadkar‬

‭100‬

‭Find an input element using the placeholder text‬

‭Note - The role for input element is‬‭textbox.‬

‭Aditya Kharadkar‬

‭101‬

‭Testing to see if we have 2 input elements or not‬

‭●‬ ‭We use‬‭getAllByRole()‬‭method to get all the elements which have‬
‭the specified role.‬

‭●‬ ‭We have specified the role as‬‭textbox‬‭to get the input elements.‬
‭●‬ ‭When we do‬‭console.log(inputName)‬‭, it prints the‬‭array of React‬

‭elements (objects/JSX)‬‭. These React elements are the input‬
‭elements we have in our document.‬

‭●‬ ‭Then we want to make sure that there should be 2 input elements.‬
‭Hence we expect the length of inputName to be 2.‬

‭Grouping of test cases‬

‭●‬ ‭We can group all the test cases in a file using the‬‭describe()‬
‭function.‬

‭●‬ ‭This function takes 2 arguments:‬
‭○‬ ‭Description‬
‭○‬ ‭An arrow function‬

‭●‬ ‭Inside the arrow function, we can put all the test cases.‬
‭●‬ ‭We can also create groups inside a group. To do that, we can put a‬

‭describe function inside a describe function.‬

‭Aditya Kharadkar‬

‭102‬

‭Note: We can also change the name of function‬‭test()‬‭to‬‭it().‬‭They‬
‭both work the same way.‬‭it() is like an alias of test().‬

‭Aditya Kharadkar‬

‭103‬

‭Note: Add the /coverage folder to .gitignore. This folder contains‬
‭the data about how many files it has covered while testing.‬

‭Testing a component which is using Redux inside‬

‭●‬ ‭Consider we have a <Header /> component which is using Redux to‬
‭see if the user is logged in or not.‬

‭●‬ ‭When we write test cases for such a component, the‬‭test()‬‭or‬‭it()‬
‭function does understand React and JSX, but‬‭it does not‬
‭understand Redux‬‭.‬

‭●‬ ‭We know what we are‬‭testing the component in isolation.‬‭Hence‬
‭it does not have access to the‬‭Redux store‬‭.‬

‭●‬ ‭So‬‭we have to provide the store to it just like we provide it to our‬
‭application.‬

‭●‬ ‭So we have to‬‭import Provider from react-redux‬‭and wrap the‬
‭<Header /> component inside <Provider store={store}>.‬

‭Aditya Kharadkar‬

‭104‬

‭Testing a component which is using <Link> element from‬
‭react-router-dom‬

‭●‬ ‭Consider that the <Header /> component also uses the <Link> tag‬
‭from react-router-dom to allow user to navigate from one page to‬
‭another.‬

‭●‬ ‭The‬‭test()‬‭or‬‭it()‬‭function also does not know about <Link>‬
‭element‬‭because it is not part of React but React router dom.‬

‭●‬ ‭So in order to make it work, we have to import the‬
‭BrowserRouter‬‭from‬‭react-router-dom‬‭and‬‭wrap our <Header />‬
‭component inside it.‬

‭Fire an event inside a test case‬

‭●‬ ‭Consider that inside the <Header /> component, we have a‬‭Login‬
‭button‬‭.‬

‭●‬ ‭Upon clicking on this button, the text changes to‬‭Logout‬‭. That‬
‭means before clicking the button, the text is‬‭Login‬‭and after‬
‭clicking the button, the text is‬‭Logout‬‭.‬

‭●‬ ‭To test this, we have to fire an event inside the test case.‬

‭Aditya Kharadkar‬

‭105‬

‭●‬ ‭In this test case, first we rendered the <Header> component.‬
‭●‬ ‭Then we tried to find the‬‭Login button‬‭using‬‭getByRole()‬‭method.‬

‭We gave the‬‭role as button‬‭and‬‭we gave the additional option to‬
‭make sure that the name of the button is‬‭Login‬‭.‬

‭●‬ ‭Then we used the‬‭fireEvent()‬‭object which has a‬‭click()‬‭method‬
‭to fire the click event on‬‭loginButton‬‭.‬

‭●‬ ‭The we try to find the button with the name as‬‭Logout‬‭.‬
‭●‬ ‭Then we expect the‬‭logoutButton‬‭to be present in the document.‬
‭●‬ ‭This is how we know if the login button is changed to logout‬

‭button after clicking the button or not.‬

‭Testing a component which takes props‬

‭●‬ ‭Consider that we have a component‬‭<ItemCard>‬‭which shows us‬
‭the details of an item such as name, price, brand name, etc.‬

‭●‬ ‭This component takes props as well.‬
‭●‬ ‭In order to test this component, we have to pass props to it while‬

‭rendering it.‬

‭Aditya Kharadkar‬

‭106‬

‭●‬ ‭These props will be the‬‭mock data‬‭which we will create inside a‬
‭folder named as‬‭mocks‬‭.‬

‭●‬ ‭So create a folder named as‬‭mocks‬‭. Then create a file inside it‬
‭and name it as‬‭itemCardMock.json‬‭.‬

‭Aditya Kharadkar‬

‭107‬

‭Integration Testing‬

‭●‬ ‭Consider that we have <Body> component which has a‬‭Search box‬
‭and Seach button‬‭.‬

‭●‬ ‭When the <Body> component renders on the browser, it makes an‬
‭API call using the‬‭fetch()‬‭function which is offered by‬‭browser‬‭.‬

‭●‬ ‭Let’s test this <Body> component‬

‭●‬ ‭When we run the‬‭npm run test‬‭command, it gives an error:‬‭fetch‬
‭is not defined.‬

‭●‬ ‭This error occurs because‬‭fetch()‬‭given by browser and we are‬
‭rendering this <Body> component on JSDOM which is browser-like‬
‭but not the actual browser.‬

‭●‬ ‭Hence this super power of browser i.e.‬‭fetch()‬‭does not exist on‬
‭JSDOM. So‬‭we have to create a mock function‬‭the same way we‬
‭created the mock data.‬

‭Note: A test case does not make an actual API call. Because we do‬
‭not run it on the browser, so it does not have power to talk to the‬
‭world.‬

‭●‬ ‭The actual‬‭fetch()‬‭function returns a promise which is‬‭json‬‭which‬
‭then return another promise which is our actual‬‭data‬‭returned‬
‭from the API call.‬

‭●‬ ‭So we will have to create the mock function the same way the‬
‭actual fetch() function works.‬

‭Aditya Kharadkar‬

‭108‬

‭●‬ ‭We are trying to create a mock function of the fetch() function‬
‭which is in the‬‭global object‬‭.‬

‭●‬ ‭We then make use of‬‭jest‬‭which has a method‬‭fn()‬‭to create a‬
‭function. This method takes an argument i.e.‬‭an arrow function‬‭.‬

‭●‬ ‭Inside the arrow function, we‬‭return a promise which resolves‬‭.‬
‭This gives us the JSON which also returns a promise.‬

‭●‬ ‭So we assigned a function to json which returns a promise which‬
‭also resolves to the actual data of the API.‬

‭●‬ ‭Note: This data will be the‬‭mock data we create in the mock‬
‭folder‬‭. So instead of passing‬‭“data”‬‭, import the mock data and‬
‭pass it here.‬

‭Note: Currently, we have to run the npm run test command again‬
‭and again after creating test cases. To solve that issue, we can‬
‭add a new command in the‬‭package.json‬‭file inside our‬‭scripts‬‭.‬

‭“watch-test”: “jest –watch”‬

‭And instead of using‬‭npm run test‬‭command, we can use‬‭npm run‬
‭watch-test‬‭.‬

‭Aditya Kharadkar‬

‭109‬

‭Note: Whenever we are using‬‭fetch()‬‭inside the test case,‬‭we‬
‭should always wrap our render() inside‬‭act() function.‬

‭●‬ ‭We will import the‬‭act‬‭from‬‭react-dom/test-utils‬‭.‬
‭●‬ ‭Then we will make the callback function of‬‭it()‬‭function‬‭async‬‭.‬
‭●‬ ‭Then we will use the‬‭await‬‭keyword before‬‭act()‬‭.‬
‭●‬ ‭Inside the act() function,‬‭we will pass an async callback function‬

‭which will render the <Body> component‬‭.‬

‭Aditya Kharadkar‬

‭110‬

‭Below is the code of Body component‬

‭Aditya Kharadkar‬

‭111‬

‭Test case for Body component‬

‭●‬ ‭Inside the‬‭it()‬‭function, we first rendered the <Body> component.‬
‭●‬ ‭Then we try to find the‬‭search button‬‭using the its role i.e.‬

‭button‬‭and name i.e.‬‭Search‬‭.‬
‭●‬ ‭Then we try to find the search input using its test id i.e.‬

‭SearchInput‬‭.‬
‭●‬ ‭We know that we have a change event for the seach button. When‬

‭the user types something in the search field and click the search‬
‭button, then we get the search results. So we need to find out‬
‭what is typed in the search field. To do that‬‭we need to fire the‬
‭change event‬‭.‬

‭Aditya Kharadkar‬

‭112‬

‭●‬ ‭For the change event, browser gives the‬‭event object‬‭which has a‬
‭target value. But to test this feature, we can give the mock data‬
‭i.e.‬‭Jeans‬‭.‬

‭●‬ ‭Then we fire a click event on the search button.‬
‭●‬ ‭Then we find the cards using their test id i.e.‬‭ItemCard‬‭.‬
‭●‬ ‭And we expect to have 3 results when we search for Jeans.‬

‭Helper functions‬

‭1.‬ ‭beforeAll() - This function will be called before running all the‬
‭test cases.‬

‭2.‬ ‭afterAll() - This function will be called after running all the test‬
‭cases.‬

‭3.‬ ‭beforeEach() - This function will be called before running every‬
‭single test case.‬

‭4.‬ ‭afterEach() - This function will be called after running every‬
‭single test case.‬

‭Aditya Kharadkar‬

‭113‬

‭Bonus - useMemo, useCallback, useRef hooks‬

‭useMemo‬

‭●‬ ‭useMemo is a React hook that‬‭lets you cache the result of a‬
‭calculation between re-renders‬‭.‬

‭●‬ ‭If a component is getting re-rendered again and again whenever a‬
‭state variable changes or an API is called, then we do not want‬
‭React to perform all the calculations again.‬

‭●‬ ‭Using useMemo hook, we can cache the calculations, so that even‬
‭if the component re-renders, it will not perform that calculation‬
‭again.‬

‭Note: In strict mode, React renders the component twice to make‬
‭sure that it renders properly. This happens only in the development‬
‭mode. In production, it will render the component only once.‬

‭●‬ ‭Consider that we have a toggle button which handles the dark‬
‭mode of the application. The value of the mode is saved in a state‬
‭variable. Whenever the button is clicked, this state variable will‬
‭change.‬

‭●‬ ‭This causes re-rendering of the component every time the button‬
‭is clicked.‬

‭●‬ ‭Suppose we have a calculation in the same component which is not‬
‭related to the dark mode feature. But whenever the button is‬
‭clicked, the calculation is performed again.‬

‭●‬ ‭If the calculation is a heavy operation, then it will cause the‬
‭performance issues.‬

‭Aditya Kharadkar‬

‭114‬

‭●‬ ‭This is when we should use the‬‭useMemo‬‭hook. The useMemo hook‬
‭memoize‬‭the calculation result.‬

‭●‬ ‭useMemo() hook takes 2 arguments:‬
‭○‬ ‭A callback function‬
‭○‬ ‭A dependency array‬

‭●‬ ‭Callback function performs the calculation.‬
‭●‬ ‭And useMemo hook performs the operation only when there is a‬

‭change in the dependency array.‬
‭●‬ ‭So even if all the state variables are changed in the component,‬

‭but there is not change in the dependency array, then the‬
‭calculation will not be performed again.‬

‭useCallback‬

‭●‬ ‭useCallback is a React hook that‬‭lets you cache a function‬
‭definition between re-renders‬‭.‬

‭●‬ ‭useCallback us quite similar to useMemo. In useMemo, we cache‬
‭the result returned by a function but in useCallback, we cache the‬
‭function itself.‬

‭●‬ ‭useCallback alse gets executed only when there is a change in the‬
‭dependency array.‬

‭useRef‬

‭●‬ ‭useRef is a React hook that‬‭lets you reference a value that’s‬
‭not needed for rendering‬‭.‬

‭●‬ ‭When there is a case,‬‭where you want to keep some data in your‬
‭component which you do not want to re-render‬‭, then we use the‬
‭useRef hook.‬

‭Aditya Kharadkar‬

